8 research outputs found

    A new result on the distinctness of primitive sequences over Z(pq) modulo 2

    Get PDF
    Let Z/(pq) be the integer residue ring modulo pq with odd prime numbers p and q. This paper studies the distinctness problem of modulo 2 reductions of two primitive sequences over Z/(pq), which has been studied by H.J. Chen and W.F. Qi in 2009. First, it is shown that almost every element in Z/(pq) occurs in a primitive sequence of order n > 2 over Z/(pq). Then based on this element distribution property of primitive sequences over Z/(pq), previous results are greatly improved and the set of primitive sequences over Z/(pq) that are known to be distinct modulo 2 is further enlarged

    LOL: A Highly Flexible Framework for Designing Stream Ciphers

    Get PDF
    In this paper, we propose LOL, a general framework for designing blockwise stream ciphers, to achieve ultrafast software implementations for the ubiquitous virtual networks in 5G/6G environments and high-security level for post-quantum cryptography. The LOL framework is structurally strong, and all its components as well as the LOL framework itself enjoy high flexibility with various extensions. Following the LOL framework, we propose new stream cipher designs named LOL-MINI and LOL-DOUBLE with the support of the AES-NI and SIMD instructions: the former applies the basic LOL single mode while the latter uses the extended parallel-dual mode. Both LOL-MINI and LOL-DOUBLE support 256-bit key length and, according to our thorough evaluations, have 256-bit security margins against all existing cryptanalysis methods including differential, linear, integral, etc. The software performances of LOL-MINI and LOL-DOUBLE can reach 89 Gbps and 135 Gbps. In addition to pure encryptions, the LOL-MINI and LOL-DOUBLE stream ciphers can also be applied in a stream-cipher-then-MAC strategy to make an AEAD scheme

    Preparation and characterization of high embedding efficiency epigallocatechin-3-gallate glycosylated nanocomposites

    No full text
    Glycosylated protein nano encapsulation was an efficient encapsulation technology, but its embedding rate for EGCG was not high, and the research on the embedding mechanism was relatively weak. Based on this, this study compared the embedding effect of glycosylated peanut globulin and glycosylated casein on EGCG. The embedding mechanism of EGCG with glycosylated protein was discussed by ultraviolet, fluorescence, infrared and fluorescence microscopy. Results revealed that the highest encapsulation efficiency of EGCG was 93.89 ± 1.11%. The neutral pH value and 0.3 mg/mL EGCG addition amount were suitable for EGCG glycosylated nanocomposites. The hydrogen bond between EGCG hydroxyl group and tyrosine and tryptophan of glycosylated protein is mainly non covalent. The encapsulation effect of EGCG glycosylated nanocomposites could be quenched by changing the polar environment and spatial structure of the group. The fluorescence characteristic and dispersibility of EGCG glycosylated peanut globin were higher than EGCG glycosylated casein. This study might provide a theoretical basis for EGCG microencapsulation technology and EGCG application in tea beverage and liquid tea food systems
    corecore